二极管,三级管原理,性质,运用?
一,1,二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。
当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 2,二极管最重要的特性就是单方向导电性。
在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。
在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。
必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。
只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。
导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。
当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
3,利用不同的半导体材料、掺杂分布、几何结构,可制成不同类型的二极管,用来产生、控制、接收、变换、放大信号和进行能量转换。
例如稳压二极管可在电源电路中提供固定偏压和进行过压保护;雪崩二极管作为固体微波功率源,用于小型固体发射机中的发射源;半导体光电二极管能实现光-电能量的转换,可用来探测光辐射信号;半导体发光二极管能实现电-光能量的转换,可用作指示灯、文字-数字显示、光耦合器件、光通信系统光源等;肖特基二极管可用于微波电路中的混频、检波、调制、超高速开关、倍频和低噪声参量放大等。 二,1,工作原理 晶体三极管晶体三极管(以下简称三极管)按材料分有两种:储管和硅管。
而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
NPN管它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β–称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β–称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 2,1、输入特性其特点是:1)当Uce在0-2伏范围内,曲线位置和形状与Uce有关,但当Uce高于2伏后,曲线Uce基本无关通常输入特性由两条曲线(Ⅰ和Ⅱ)表示即可。2)当Ube<UbeR时,Ib≈O称(0~UbeR)的区段为“死区”当Ube>UbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。3)三极管输入电阻,定义为:rbe=(△Ube/△Ib)Q点,其估算公式为:rbe=rb+(β+1)(26毫伏/Ie毫伏)rb为三极管的基区电阻,对低频小功率管,rb约为300欧。2、输出特性输出特性表示Ic随Uce的变化关系(以Ib为参数),它分为三个区域:截止区、放大区和饱和区。截止区当Ube<0时,则Ib≈0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是:Icbo=(1+β)Icbo常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12℃,Icbo数值增加一倍,而对于硅管温度每升高8℃,Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管工作在放大状态的区域。饱和区当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。根据三极管发射结和集电结偏置情况,可能判别其工作状态。截止区和饱和区是三极管工作在开关状态的区域,三极管和导通时,工作点落在饱和区,三极管截止时,工作点落在截止区。 3,主要用于放大信号。作为主要部件,它及时、普遍地首先在通讯工具方面得到应用,并产生了巨大的经济效益。由于晶体管彻底改变了电子线路的结构,集成电路以及大规模集成电路应运而生,这样制造像高速电子计算机之类的高精密装置就变成了现实。
二极管电流方向?
三角形表示二极管的正负极,三角形角尖表示可以通过电流的方向,角尖上的横线表示不通电流的方向,前者正极后者负极。
二极管的作用和工作原理
二极管的主要原理就是利用PN结的单向导电性,在PN结上加上引线和封装就成了一个二极管。晶体二极管为一个由P型半导体和N型半导体形成的PN结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于PN结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流。
双向触发二极管原理
双向触发二极管原理:用两个二极管反并联组成的,在电路中与输入信号并联,主要起限压作用,当输入信号的幅度在0。5以下时,可以通过,当大于0。5以上时,二极管就开始导通,以免损坏电路的其它元器件和引起放大电路失真。
双向触发二极管亦称二端交流器件,与双向晶闸管同时问世。由于它结构简单、价格低廉,所以常用来触发双向晶闸管,还可构成过压保护等电路。双向触发二极管的构造、符号及等效电路。
二极管工作原理
1、二极管工作原理(正向导电,反向不导电),晶体二极管是一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成了空间电荷层,并且建有自建电场,当不存在外加电压时,因为p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当产生正向电压偏置时,外界电场与自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流(也就是导电的原因)。当产生反向电压偏置时,外界电场与自建电场进一步加强,形成在一定反向电压范围中与反向偏置电压值无关的反向饱和电流I0(这也就是不导电的原因)。
2、当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
稳压二极管工作原理
1、稳压管也是一种晶体管,它是利用PN结穿区具有稳压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。
2、当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。稳压管反向击穿后,电流虽然在很大范围内变化,但稳压管两端的电压变化很小。利用这一特性,稳压管在电路中能起稳压作用。
3、稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。
二极管的结构原理
1、结构:二极管是由半导体组成的器件、半导体无论那个方向都能流动电流、二极管的正、负两个端一端称为阳极、一端称为阴极、电流只能从阳极向阴极方向移动。
2、原理:晶体二极管是一个由p型半导体和n型半导体形成的pn结,在其界面处两侧形成了空间电荷层,并且建有自建电场,当不存在外加电压时,因为pn结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当产生正向电压偏置时,外界电场与自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流,也就是导电的原因。 当产生反向电压偏置时,外界电场与自建电场进一步加强,形成在一定反向电压范围中与反向偏置电压值无关的反向饱和电流,这也就是不导电的原因。
二极管整流桥堆的工作原理
二极管整流桥堆的工作原理:整流桥堆产品是由四只整流硅芯片作桥式连接,外用绝缘朔料封装而成,大功率整流桥在绝缘层外添加锌金属壳包封,增强散热。
二极管整流桥堆的基本组成:全桥由四只二极管组成,有四个引出脚。两只二极管负极的连接点是全桥直流输出端的“正极”,两只二极管正极的连接点是全桥直流输出端的“负极”。半桥由两只二极管组成,有三个引出脚。正半桥两边的管脚是两个二极管的正极,即交流输入端;中间管脚是两个二极管的负极,即直流输出端的“正极”。
二极管原理
二极管原理
二极管的原理是当产生正向电压偏置时,外界电场与自建电场的互相抑消作用使载流子的扩散电流增加引起正向电流,因而会导电。而当产生反向电压偏置时,会产生反向饱和电流I0,但与反向偏置电压值无关,因而不会导电。
二极管的简介
二极管是一种具有两个电极的装置,但只允许电流由单一方向流过。二极管一般是由两个半导体组成,分别是p型半导体和n型半导体。二极管的分类有很多,可以根据半导体的材料、用途等进行分类,其中根据半导体材料可以分为锗二极管和硅二极管。
发光二极管的原理
发光二极管简称为LED,由含镓、砷、磷、氮等的化合物制成,发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性,当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光,不同的半导体材料中电子和空穴所处的能量状态不同,当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。
发光二极管的发光原理是什么
发光二极管简称为LED。由镓与砷、磷的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。
发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。
二极管在电路板上的工作原理是什么?
- 二极管在电路板上的工作原理是什么?
- 二极管由单向导通的特性,在实际电路中功能主要是,对高频信号进行检波,和对交流电进行整流,两大掸定侧剐乇溉岔税唱粳功能,真心在帮你期待采纳,